Disk File Monitor User Guide
Version 0.15.1
October 7, 2009

Steve Dobbelstein

Table of Contents

OVERIVICW.....eiteeieeeeteee e eeeee e e ettt e e e et e e e eeaae e e e et ae e e e eetaeeeeeesaeeeeeeeaseseeeetsaeeeeastseeeeeastseeeeeaseeeeentrraeaeeeeeaeeaeas 3
ROOE PLIVIIEEES.eeiiiieeiiie ettt ettt ettt e e e e et e e et eesbeeesaseeessseeesnseeeassaeeeesnsnsanaaeeeannnes 3

L@ A A 21110 10) SO PPRPPPRR 3

2] 111 16 11 XTSRRI 3
INSEALLALION.eeiiiiiiiic ettt e e e ee e e e et e e e e eeaaa e e e eeaae e e e eeaaeeeeeeaaaeeeeeaaeeeeeatrtaeeeaaean 4
BaSIC OPEIAtION......eiiiiiiiiiieetiee ettt eete ettt ee et e ettt e et e e etaeessaeeessaeesssaeeassaeeassaeessaeanssaeasseeenssaeensssaneeens 5
| 100 1<) o JOT TR UPPUPPPPRUPPPPIRt 5
1L AT] T 1 L) 42 B 5

I AT ONST=<IEEIATIONS ™. ... utviiiieiieieeeeiteee e ettt e e eeeteeeeeeetaeeeeeetaeeeeeetaseeeeetsseeeeesseeeeensssseeeensseeeeennnnnne 6

(0o 1 (s [(ol T S 6
OPTIOMIS ...ttt eettette ettt ettt e et estee e bt estte e st e e seeeabe e seeeabeeseeeaseessteenbeensaesaseanseaenbeensbesnseesansseeaenssaeesnnsseeas 6
P 4 b PSR PRR 6
SIGUSRZ ...ttt e et e e e e e e e e e e eata e e e eetaeeeeeeaeeeeeeaaeeeesenssssssssssseeeees 6
SIGUSRI ettt e e et e e et e e e eeat et e e eeaaeeeeeenaeeeeseaaaeeeesesaaaseesaeeeeeeeas 6
TRIMINALION.eeiiiiiiieeeeitee e et e e eeete e e eete e e e ee et e e e eetaeeeeeeaaeeeeeesaseeeeeetaseeeeetaeeeeensseeeeenssseeeeesreeeeanns 7
AdVANCEA OPETALION......eeeiiiieiiieeiiieeteeeiee et e e ette e et e e steeeseseeestaeeesseessseeessseesssseesssssaaeeseessssseeeeeesnnsssees 7
The DEDUZE'S TTEE.....cuuieiiieiieeie ettt ettt et e et e et e e tte e abe e taeenbeessaesasaeeennsbeeeenseeesannees 7
LAY OULS. ...ttt ettt et e e e e ettt e e e et e e e et e e e ettt e e e e e tatae e e bt e eeeantaeaaeeeeeeeeaaaaaaaaannnnnnes 8
FALEIICE. ... et e et e e e et e e e et e e e et e e e et e e e e e aaaaaaeaaeeaaaaan 8
B0 1< o F: T« PP 8

The AfM-CIL SCIIPL...cueiieiieeie ettt ettt ettt e et e e teeenbeebeeenseessaeeeennsaeeennns 9
(G T PP 9

] 721 O TP 9

] 10) TSP 9

TES v vveeeeeeeeeeeetrereeeeeeeeeeeturrreeeeeeeeeeaettraaaeeeeeeeeaa ittt aaaaaaeeeeaaaattaaaattaeeeeeaa—araaaaaaeeeenattaararaaeeeeaaaarrrenrrraes 9

SEALS . .o eeeeieeeie ettt —— 9

] 72110 1RO 9

L 0] AR UUPURPRE 10
CXCIUAC. ..t e et e e e e e e e e e e e—— e e e eeaateeeeataaaaeeaaaaaaan 10

Y4 [« IR R 10

115 181017/ USRS 10

(o] 12 O RRROORRRRRPRRPRN 10

VEIDOSE. .ttt ettt et e ettt e e e et e et e e e e e —— e e e e e ——teeea——aeeea—ateeeaiaaaeeeatrtaaeaeaaaaaan 10

O ettt ettt e e ta e et — e e e taee e tbee e tte e e bteeabaee e taeeansaeeantaeeeeannntraaaeeeaanns 11
UNOAM. ...t et e e e e et e e e ettt e e e e e aaeeeeeeaaeeeeeetaeee e e aaraaaaeraaaaaaaaaaaaaaaaaas 11
FOrmMatting OULPUL.......ceeiiiieiiie ettt ettt e e e et e e st e e s teeesateeesntee e sseeesseeenssaeanssaaeeeannssseeaaeens 11

o N0 o) 2 1 1< o) PO ROPORURUPUUPRRRRPRO 12
AEMDY-COUNEPL.ceeiie et e et e ettt e et e e eabeeesaeessaeeensaeeeesnsssssaaeeeennnes 14

Lo N0 o) 2 o) 113N o) OO PUUPPTUPRUTRRUPRN 15

Disk File Monitor User Guide Page 2

Overview

The Disk File Monitor (DFM) monitors I/O requests going to the physical disks and maps the requests
to the files for which they were issued. DFM doesn't monitor all the file system operations on a file
(read, write, create, delete, etc.). It only monitors the I/O that generates physical disk activity. A file
may be read and written a lot but generate no physical disk activity if all of the reads and writes hit the
cache. Knowing which file usages generate the most physical I/O can be useful to system
administrators. One way they can use this information is in determining which files are good
candidates for being moved to faster storage.

DFM uses kprobes to hook into the kernel code paths that generate physical I/0. It captures statistics
about the I/O requests and puts them in the debugfs file system where they are gathered by a user-space
program.

Root Privileges

As mentioned above, DFM uses kprobes. Kprobes are implemented as kernel modules. Only root is
allowed to load kernel modules. Therefore you must have root privileges to run DFM.

Caveat Empftor

Although the utility has been tested in a variety of disk usage scenarios and on several Linux
distributions, there is still an inherent risk for bugs. Bugs in kernel modules can cause severe system
failure from recoverable oopses to kernel panics and system hangs. Make sure you run DFM on a
system that can endure a system failure.

Warning! Opening the kernel may void your warranty. Some Linux distributions will not provide
support for a system that has kernel modules loaded that were not approved by the distribution. Only
run DFM on a system where you are willing to forfeit support from the distribution.

Building
Untar the source file.

woody:~ # tar xzf dfm-0.15.1l.tgz
woody:~ #

Change to the source directory and run make to build the kernel module.

woody:~ # cd dfm-0.15.1
woody:~/dfm-0.15.1 # make
make -C /lib/modules/2.6.16.60-0.21-smp/build M=/root/dfm-0.15.1
KCPPFLAGS="-DHAVE INODE_ GENERIC TP -DHAVE KALLSYMS LOOKUP_NAME" modules
make[l]: Entering directory ~/usr/src/linux-2.6.16.60-0.21"

CC [M] /root/dfm-0.15.1/kprobes.o

CC [M] /root/dfm-0.15.1/log.o

CC [M] /root/dfm-0.15.1/debugfs_control.o

CC [M] /root/dfm-0.15.1/debugfs stats.o

CC [M] /root/dfm-0.15.1/filetree.o

CC [M] /root/dfm-0.15.1/namehash.o

LD [M] /root/dfm-0.15.1/dfm mod.o

Disk File Monitor User Guide Page 3

Building modules, stage 2.

MODPOST

cc /root/dfm-0.15.1/dfm mod.mod.o

LD [M] /root/dfm-0.15.1/dfm mod.ko
make[l]: Leaving directory ~/usr/src/linux-2.6.16.60-0.21"
woody:~/dfm-0.15.1 #

The Makefile will detect the version of the currently running kernel and will build the DFM module for
that kernel version. If you want to build the DFM module for a different kernel that you have installed
on your system, set the KERNEL RELEASE variable on the command line when you run make.

woody:~/dfm-0.15.1 # make KERNEL RELEASE=2.6.25-smp
make -C /lib/modules/2.6.25-smp/build M=/root/dfm-0.15.1 KCPPFLAGS="
-DHAVE _INODE_I PRIVATE -DHAVE KPROBE_ SYMBOL NAME " modules
make[l]: Entering directory ~/usr/src/linux-2.6.25"
Makefile:548: "WARNING: Appending $KCPPFLAGS (—DHAVE_INODE_I_PRIVATE
-DHAVE KPROBE SYMBOL NAME) from command line to kernel $CPPFLAGS"
CC [M] /root/dfm-0.15.1/kprobes.o
CC [M] /root/dfm-0.15.1/log.o
CC [M] /root/dfm-0.15.1/debugfs control.o
CC [M] /root/dfm-0.15.1/debugfs stats.o
CC [M] /root/dfm-0.15.1/filetree.o
CC [M] /root/dfm-0.15.1/namehash.o
LD [M] /root/dfm-0.15.1/dfm mod.o
Building modules, stage 2.
MODPOST 1 modules
cc /root/dfm-0.15.1/dfm mod.mod.o
LD [M] /root/dfm-0.15.1/dfm mod.ko
make[l]: Leaving directory ~/usr/src/linux-2.6.25"'
woody:~/dfm-0.15.1 #

Kernels before 2.6.19 have a bug in the debugfs code which causes the kernel to panic when the
debugfs code faults on a bad pointer when it encounters an error when trying to allocate memory. You
may hit this problem if DFM is collecting statistics on a lot of files and the system becomes memory
constrained. If possible, apply the debugfs-fix.patch to your kernel source and rebuild the
kernel.

Installation

Installing DFM is optional. You can run the utility out of the source directory once it has been built.
When you run it out of the source directory it will load the kernel module that was built in that
directory.

If you want, you can install the utility by running make install, which will run

make modules install to install the DFM kernel module into

/1lib/modules/<KERNEL_ VERSION>/ and will copy the dfm and dfm-ctrl scripts to /usr/
local/sbin. When the utility is run from /usr/local/sbin it will load the DFM kernel
module that was installed in /1ib/modules/ uname -r~/ instead of the one in the source
directory.

Disk File Monitor User Guide Page 4

Basic Operation

DFM provides a front end bash script, named dfm, that provides a user-friendly interface for running
DFM. The script will startup DFM, gather the statistics from the debugfs file system, and shutdown
DFM. To get started with DFM simply run the d£m script with no parameters. The default behavior is
to gather the statistics every five seconds and print them to standard out.

Here is some sample output from one interval.

Start: 2009/09/10 20:15:21.882323
Stop: 2009/09/10 20:15:26.885819
/dev/sda2
I/0 Count Bytes
Read 1 4096
Write 0 0
Total 1 4096
/var/db2/.fmcd.lock
I/0 Count Bytes
Read 0 0
Write 3 12288
Total 3 12288
/usr/local/bin/screen-4.0.2
I/0 Count Bytes
Read 1 4096
Write 0 0
Total 1 4096

The output begins with the start time and stop time for the interval. Each of the entries for the files
begins with the file name on one line followed by lines for each type of I/O done to that file. The I/O
type lines list the I/O type, the count of requests of that type, and the total number of bytes for that type.

Parameters

The dfm script has three parameters: interval, iterations, and exclude.

interval=<interval>

You can specify the amount of time the script waits between each gathering of the statistics from the
debugfs tree. The interval can have optional units of s[econds], m[inutes], h[ours], or d[ays]. The

default unit is seconds.

For example, you can run:
dfm interval=10 Wait 10 seconds between each sample.
dfm interval=lm Wait 1 minute between each sample.
dfm interval=3hours Wait 3 hours between each sample.

The default interval is 5 seconds.

Disk File Monitor User Guide Page 5

iterations=<iterations>

You can specify the number of times the script gathers the statistics from the debugfs tree. The default
number of iterations is 24 hours divided by the interval. For example, at the default interval of 5
seconds, the default number of iterations is 60*60*24/5 = 17280.

For example, you can run:

dfm iterations=12 Take 12 samples with 5 seconds (the default) between
each sample.

dfm interval=1lm iterations=5 Take 5 samples with 1 minute between each sample.

exclude=<device list>

Your system may have numerous physical disks. You may be interested in monitoring the files on only
a subset of the physical disks on the system. For example, you may only be interested in monitoring
files from a specific file system. Monitoring all the disks can end up dumping a lot of data, most of
which you would ignore. DFM provides a way of excluding devices from being monitored.

You can set a list of devices to be excluded with the exclude=<device 1list> parameter. The
devices may be specified in either [/dev/]<name> or <major>:<minor> format. If you specify
more than one device, you must enclose the list in quotes so that the list is passed as a single parameter,
for example, exclude="sda sdb 8:96".

Options
The dfm script has a few options.

Option Description
-V, --version Display the DFM version and then exit.

-1, --Taw Display the raw statistics data without labels. This option is useful if you want to
process the output with another program. It strips the labels and reduces the
whitespace for easier parsing.

-h, -?, --help Display the help text.

Signals

The dfm script handles several signals.

SIGUSR2

Send SIGUSR2 to the running dfm process to tell it to suspend its operation. The script will stop the
DFM probes and wait for a SIGUSR1 signal to resume.

SIGUSR1

Send SIGUSRI1 to the running dfm process to tell it to resume its operation. If the script was
suspended, it will dump the current statistics, start the DFM probes, and resume its loop of dumping the

Disk File Monitor User Guide Page 6

statistics after each interval. If the script was already running, SIGUSRI1 has the side effect of making
the script dump the statistics at that moment instead of waiting for the interval to expire.

Termination

If the script is interrupted (Ctrl-c, or a signal to quit) it gathers the statistics one last time before it
unloads the kernel module and exits. This feature is useful if you don't know ahead of time how long
you want the interval to be. For example, you may want to gather the disk file statistics during the run
of a program, but you don't know how long the program will run. You can start the dfm script with a
large interval, e.g., 10000, start the program, and then kill the dfm script when the program is finished.
The script will then dump the disk file statistics from the time it was started.

Advanced Operation

This section provides the details on how DFM operates.

The user interface to the DFM kernel module is through the debugfs file system. The dfm script makes
sure that the debugfs file system is mounted before it begins its work. The debugfs file system is
usually mounted on /sys/kernel/debug.

The DebugFsS Tree

The DFM kernel module creates a directory named dfm in the root of the debugfs tree. All the DFM
debugfs activity occurs in the dfm directory. DFM maintains several control files in the dfm directory.

File name Function

running Read this file to see if the probes are running. (The DFM kernel module can be
loaded but not running.) 0 = probes stopped 1 = probes running
Write a “0” to this file to stop the probes. Write a non-zero value to the file to start
the probes.

reset Write a non-zero value to this file to reset the statistics. The probes are temporarily
stopped, everything in the dfm/statistics directory is deleted, and the probes
are restarted.

layout Read this file to see the available layouts and which one is currently being used. The
one in use is in square brackets.
Write a layout name to this file to set a new layout. Setting a new layout causes a
reset of the statistics.

exclude Read this file to see the list of devices, indicated by <major>:<minor>, that currently
excluded from being monitored.
Write a list of devices, <major>:<minor> couples separated by spaces, to this file to
set the list of excluded devices. Write and empty string to this file to clear the list of
excluded devices.

Disk File Monitor User Guide Page 7

File name Function

verbose Read this file to see the verbose level. The verbose level determines which messages
get logged.
Write a number to this file to set the verbose level. The DFM verbose levels match
the levels used for printk() messages in the kernel. Valid values are from 0 to 7.

start time Read this file to see the time that DFM started collecting statistics. If the probes were
never started since the kernel module was loaded, this file will be empty.

stop_time Read this file to see the time that DFM stopped collecting statistics. If the probes
were never started since the kernel module was loaded, or if DFM is currently
collecting statistics, this file will be empty.

log Read this file to see DFM's in-memory log.

The statistics are kept in a statistics subdirectory in the dfm directory according to the layout that
is currently in use.

Layouts

So exactly how are the statistics laid out in the debugfs tree? The DFM architecture has pluggable
layouts. In this release, DFM provides two layouts: filetree and namehash.

Filetree

The filetree layout creates the debugfs entries using the same file name and directory structure of the
currently mounted file systems. The name of the file for which the statistics are being collected
becomes the name of a directory in the debugfs tree. Within that directory are files with the names of
the different types of I/O that have been made to the file. For example, the number of bytes requested
for type “Readahead” on file /usr/src/linux/kernel/sched.c would be logged in the file
<debugfs-root>/dfm/statistics/usr/src/linux/kernel/sched.c/Readahead.

Namehash

The filetree layout nicely preserves the file structure of the system. It makes it obvious which files the
statistics are for. However, it can take a long time to traverse the directory structure when it comes
time to gather the statistics. Gathering the statistics should be fast so that the interruption to collecting
the statistics is minimal. (Any program gathering statistics from the DFM debugfs tree should stop the
DFM kernel module's statistics collection while gathering the statistics to avoid the danger of trying to
traverse a changing directory tree. Stopping the probes for too long can result in a significant loss of
statistics collected.)

The namehash layout creates a unique hash value for each file and creates a directory that is named
with the ASCII string of the hexadecimal value of the hash. As with the filetree layout, the directory
contains files with the names of the different types of I/O that have been made to the file. Any program
that gathers the statistics needs to traverse only two levels deep to get the statistics. In this layout the
name of the file is not apparent. The namehash layout puts a file named £ilename into the directory
along with the I/O type files. The filename file contains the full path of the file name.

Disk File Monitor User Guide Page 8

The dfm-ctrl Script

The dfm-ctrl script provides several commands that make it easier to work with DFM control files
and statistics. The structure of the debugfs tree is abstracted away to simple commands.

load

The load command attempts to load the DFM kernel module. In an effort to support development of
the utility, the script does not require that the module be installed in the

/lib/modules/ uname -r" tree. The script checks to see if the module exists in the same
directory from which the script was run. If it finds the module there, it uses insmod to load the
module. Ifit does not find the module there, is uses modprobe to load the module. Thus, if the script
is run from the build directory, it will find the built module in the directory and will load that version of
the module. If the script is invoked from its installed directory, /usr/local/sbin, it will not find
the DFM module there and will run modprobe, which will load the installed version of the module,
the onein /1lib/modules/ uname -r" /extra/.

start

The start command will load the DFM kernel module if it is not already loaded and then, if the probes
are not already running, echoes “1” to <debugfs mount>/dfm/running to start the probes.

stop

The stop command checks to see if the DFM probes are running (i.e., cat
<debugfs mount>/dfm/running does not return 0) and, if so, echoes “0” to
<debugfs mount>/dfm/running to stop the probes.

reset

The reset command echoes a “1” to the <debugfs mount>/dfm/reset file which tells the DFM
kernel module to clear the statistics.

stats

The stats command dumps the statistics in the debugfs tree. The command has a safety check to make
sure that the probes are not running before it gathers the statistics. Gathering the statistics involves
walking the <debugfs mount>/dfm/statistics/ tree. If the probes are running, the contents
of the tree can be changing, making a tree walk dangerous. The user can override the safety check with
the ——force option. (The force option can also be specified as —f or force=yes.)

status

The status command displays whether the DFM kernel module is loaded or not, what layouts are
available, the current layout being used, the current verbose level, whether the probes are running or
not, what time the probes started running, and what time they stopped, if the probes are stopped.

Disk File Monitor User Guide Page 9

layout

Without any parameters, the layout command displays the layout that DFM is currently using. If the
layout command is given a parameter, it will attempt to set the DFM layout to the parameter given.
The layout command checks to make sure that the layout given appears in the list of layouts supported
in <debugfs_mount>/dfm/layout.

exclude

Without any parameters, the exclude command displays the list of devices that are currently excluded
from being monitored. The devices are listed as <major>:<minor> pairs. As a help to the user, the
script finds the device name associated with the <major>:<minor> and displays the name in parenthesis
next to the <major>:<minor>, for example: 8:0 (/dev/sda) Ifthe exclude command is given
parameters it will use them to set the list of excluded devices. Devices can be specified in the
<major>:<minor> format or by name with the optional /dev/ prefix, e.g., sda.

The exclude command has several subcommands to aid in setting the list of devices. The debugfs
interface to DFM only supports the setting of the entire list. Users, however, may want to add devices
to the list or remove a subset of devices from the list. Also, since the exclude command interprets the
lack of parameters to be a query of the excluded devices list, there is no way to set an empty lists, i.e.,
clear the list. The exclude command supports the following subcommands.

add

The add subcommand adds devices to the excluded devices list. As with the native exclude command,
devices can be specified in the <major>:<minor> format or by name. The add subcommand reads the
current list of excluded devices from <debugfs mount>/dfm/exclude, appends the new
devices, and writes the new list to <debugfs mount>/dfm/exclude.

remove

The remove subcommand removes devices from the excluded devices list. As with the native exclude
command, devices can be specified in the <major>:<minor> format or by name. The remove
subcommand reads the current list of excluded devices from <debugfs mount>/dfm/exclude.
Then for each device given to the command, it searches the list of excluded devices for the given
device. Ifit finds it, it removes it from the list. It then write the new list back to

<debugfs mount>/dfm/exclude.

clear

The clear subcommand writes an empty list to <debugfs mount>/dfm/exclude, which
effectively removes all devices from the exclude list.

verbose

Without any parameters, the verbose command displays the current DFM verbose level. It simply does
acat <debugfs mount>/dfm/verbose. If the verbose command is given a parameter, it will
attempt to set the DFM verbose level to the parameter given by echoing the value into

Disk File Monitor User Guide Page 10

<debugfs mount>/dfm/verbose. The verbose command checks to make sure that the verbose

level given is a positive integer. It will also accept the keyword names for each level: emerg[ency] (0),
alert (1), crit[ical] (2), err[or] (3), warn[ing] (4), notice (5), info (6), and debug (7).

log

The log command dumps out the DFM internal log. It simply does a cat of the

<debugfs mount>/dfm/log file. For convenience, the log command checks to see if standard
out is a tty and the environment has the PAGER variable set. If so, it pipes the output of the log file
into the pager for easy browsing.

unload

The unload command unloads the DFM kernel module. It simply does an rmmod dfm mod if the
module is loaded.

Formatting Output

The output of the DFM statistics is not be sorted in any order. This package has several Perl scripts
that will sort the statistics into an order that is meaningful to the user. The scripts can be called with
the name of a file that contains DFM output, or they can be used as filters by taking input from
standard in. The scripts send their output to standard out.

Disk File Monitor User Guide Page 11

dfm-by-file.pl

For each file given in the DFM output, dfm-by-file.pl sums up the counts and bytes for each interval. It
sums all the read I/O types into one statistic for reads and all the write I/O types into one statistic for
writes. It then sorts the data by file name and prints it out. Here is some sample output from a build of

DFM. (The entries for the numerous kernel header files have been removed.)

I/0
Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Read
Write
Total

Count
1
0
1

529
1263
1792

Bytes
16384

0
16384

16384
0
16384

16384
0
16384

16384
0
16384

16384
0
16384

2166784
5173248
7340032

4096
0
4096

4096
0
4096

4096
0
4096

4096
0
4096

20480
0
20480

4096
0
4096

16384
0
16384

4096
0
4096

4096
0
4096

4096
0
4096

4096
0
4096

File

/bin/cat
/bin/cat
/bin/cat

/bin/mv
/bin/mv
/bin/mv

/bin/pwd
/bin/pwd
/bin/pwd

/bin/sleep
/bin/sleep
/bin/sleep

/bin/uname
/bin/uname
/bin/uname

/dev/sda2
/dev/sda2
/dev/sda2

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

Disk File Monitor User Guide

15.
15.
15.

15.
.0/.tmp_debugfs_stats.o
15.

15

15.
.0/.tmp_versions/dfm_mod.mod
15.

15

15.
.0/Makefile
15.

15

15.
.0/debugfs_control.c
15.

15

15.

15

15.
.0/debugfs_stats.c
15.

15

15.
.0/debugfs_stats.h
15.

15

15.
.0/dfm.h
15.

15

15. .
.0/dfm_mod.ko
15.

15

15.

15

0

0

0

0/.tmp_debugfs_stats.o
0/.tmp_debugfs_stats.o
0/.tmp_versions/dfm_mod.mod
0/.tmp_versions/dfm mod.mod
0/Makefile

0/Makefile
0/debugfs_control.c

0/debugfs_control.c

0/debugfs_control.h

.0/debugfs_control.h
15.

0/debugfs_control.h
0/debugfs_stats.c
0/debugfs_stats.c
0/debugfs_stats.h
0/debugfs_stats.h
0/dfm.h

0/dfm.h
0/dfm_mod.ko
0/dfm_mod.ko

0/field-in-struct.pl

.0/field-in-struct.pl
15.

0/field-in-struct.pl

Page 12

Read 1 8192 /root/dfm-0.15.0/filetree.c

Write 0 0 /root/dfm-0.15.0/filetree.c

Total 1 8192 /root/dfm-0.15.0/filetree.c

Read 0 0 /root/dfm-0.15.0/filetree.o

Write 2 8192 /root/dfm-0.15.0/filetree.o

Total 2 8192 /root/dfm-0.15.0/filetree.o

Read 1 49152 /root/dfm-0.15.0/kprobes.c

Write 0 0 /root/dfm-0.15.0/kprobes.c

Total 1 49152 /root/dfm-0.15.0/kprobes.c

Read 1 4096 /root/dfm-0.15.0/kprobes.h

Write 0 0 /root/dfm-0.15.0/kprobes.h

Total 1 4096 /root/dfm-0.15.0/kprobes.h

Read 0 0 /root/dfm-0.15.0/kprobes.o

Write 4 16384 /root/dfm-0.15.0/kprobes.o

Total 4 16384 /root/dfm-0.15.0/kprobes.o

Read 1 8192 /root/dfm-0.15.0/log.c

Write 0 0 /root/dfm-0.15.0/log.c

Total 1 8192 /root/dfm-0.15.0/log.c

Read 1 4096 /root/dfm-0.15.0/log.h

Write 0 0 /root/dfm-0.15.0/log.h

Total 1 4096 /root/dfm-0.15.0/log.h

Read 1 12288 /root/dfm-0.15.0/namehash.c

Write 0 0 /root/dfm-0.15.0/namehash.c

Total 1 12288 /root/dfm-0.15.0/namehash.c

Read 0 0 /root/dfm-0.15.0/namehash.o

Write 2 8192 /root/dfm-0.15.0/namehash.o

Total 2 8192 /root/dfm-0.15.0/namehash.o

Read 1 16384 /usr/bin/as

Write 0 0 /usr/bin/as

Total 1 16384 /usr/bin/as

Read 1 16384 /usr/bin/gcc

Write 0 0 /usr/bin/gcc

Total 1 16384 /usr/bin/gcc

Read 1 16384 /usr/bin/1ld

Write 0 0 /usr/bin/1ld

Total 1 16384 /usr/bin/1ld

Read 1 16384 /usr/bin/make

Write 0 0 /usr/bin/make

Total 1 16384 /usr/bin/make

Read 1 16384 /usr/bin/objdump

Write 0 0 /usr/bin/objdump

Total 1 16384 /usr/bin/objdump

Read 1 16384 /usr/bin/perl

Write 0 0 /usr/bin/perl

Total 1 16384 /usr/bin/perl

Read 1 16384 /usr/lib64/gcc/x86_64-suse-linux/4.1.2/ccl
Write 0 0 /usr/lib64/gcc/x86_64-suse-linux/4.1.2/ccl
Total 1 16384 /usr/1ib64/gcc/x86_64-suse-linux/4.1.2/ccl
Read 1 8192 /usr/lib64/gcc/x86_64-suse-linux/4.1.2/include/stdarg.h
Write 0 0 /usr/lib64/gcc/x86_64-suse-linux/4.1.2/include/stdarg.h
Total 1 8192 /usr/1lib64/gcc/x86_ 64-suse-linux/4.1.2/include/stdarg.h
Read 1 16384 /usr/1ib64/1ibbfd-2.16.91.0.5.s0

Write 0 0 /usr/1ib64/1ibbfd-2.16.91.0.5.s0

Total 1 16384 /usr/lib64/1ibbfd-2.16.91.0.5.s0

Read 1 16384 /usr/lib64/libopcodes-2.16.91.0.5.s0
Write 0 0 /usr/lib64/libopcodes-2.16.91.0.5.s0

Total 1 16384 /usr/lib64/libopcodes-2.16.91.0.5.s0

Disk File Monitor User Guide Page 13

dfm-by-count.pl

For each file given in the DFM output, dfm-by-count.pl sums up the counts and bytes for each interval.
It sums all the I/O types into one statistic for the file. It then sorts the data by count and prints it out.
Here is the same output from the build of DFM, this time processed by dfm-by-count.pl.

Count Bytes File
1792 7340032 /dev/sda2
4 16384 /root/dfm-0.15.0/kprobes.o

12288 /var/db2/.fmcd.lock

8192 /root/dfm-0.15.0/filetree.o

8192 /root/dfm-0.15.0/namehash.o

12288 /root/dfm-0.15.0/namehash.c

16384 /usr/bin/make

16384 /root/dfm-0.15.0/debugfs_stats.c

8192 /root/dfm-0.15.0/log.c

4096 /root/dfm-0.15.0/kprobes.h

16384 /usr/bin/as

49152 /root/dfm-0.15.0/kprobes.c

4096 /root/dfm-0.15.0/log.h

16384 /usr/bin/1ld

8192 /root/dfm-0.15.0/filetree.c

16384 /usr/bin/objdump

16384 /usr/bin/gcc

16384 /usr/libé64/libopcodes-2.16.91.0.5.s0
16384 /usr/1lib64/1ibbfd-2.16.91.0.5.s0

4096 /root/dfm-0.15.0/debugfs_stats.h

8192 /usr/1ib64/gcc/x86_64-suse-linux/4.1.2/include/stdarg.h
4096 /root/dfm-0.15.0/.tmp_debugfs_stats.o
4096 /root/dfm-0.15.0/.tmp_versions/dfm mod.mod
4096 /root/dfm-0.15.0/debugfs_control.h
20480 /root/dfm-0.15.0/debugfs_control.c
4096 /var/spool/postfix/incoming

16384 /bin/uname

16384 /bin/pwd

16384 /bin/mv

16384 /usr/lib64/gcc/x86_64-suse-linux/4.1.2/ccl
4096 /root/dfm-0.15.0/field-in-struct.pl
4096 /root/dfm-0.15.0

4096 /root/dfm-0.15.0/dfm.h

16384 /bin/sleep

16384 /usr/bin/perl

4096 /root/dfm-0.15.0/Makefile

4096 /root/dfm-0.15.0/dfm_mod.ko

16384 /bin/cat

FRRPRRPRRPRRPRPRPPPRPPEPPPPPEPEPRPPREPERERRERRERERERERRERRRPRRPR,EPE,NONDW

Disk File Monitor User Guide Page 14

dfm-by-bytes.pl

For each file given in the raw output, dfm-by-bytes.pl sums up the counts and bytes for each interval.
It sums all the I/O types into one statistic for the file. It then sorts the data by bytes and prints it out.

Here is the same output from the build of DFM, this time processed by dfm-by-bytes.pl.

Bytes
7340032
49152
20480
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
16384
12288
12288
8192
8192
8192
8192
8192
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096
4096

Count
1792
1

PR RRRRRRRERERERENENRFRORRRRERRRERRERRRRRRRRRR

File
/dev/sda2

/root/dfm-0.15.0/kprobes.c

/root/dfm-0.15.0/debugfs_control.c
/usr/bin/make
/root/dfm-0.15.0/debugfs_stats.c

/usr/bin/as
/usr/bin/1d

/usr/bin/objdump

/usr/bin/gcc

/usr/1lib64/libopcodes-2.16.91.0.5.s0

/usr/1ib64/1ibbfd-2.16.91.0.5.s0

/bin/uname
/bin/pwd

/root/dfm-0.15.0/kprobes.o

/bin/mv

/usr/1ib64/gcc/x86_64-suse-linux/4.1.2/ccl

/bin/sleep

/usr/bin/perl

/bin/cat

/root/dfm-0.15.0/namehash.c
/var/db2/.fmcd.lock
/root/dfm-0.15.0/log.c
/root/dfm-0.15.0/filetree.c
/root/dfm-0.15.0/filetree.o

/usr/src/linux-2.6.16.60-0.21-fix/include/asm-x86_64/page.h

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.
/root/dfm-0.
/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

15
15
15
15

15.0/.tmp_debugfs_stats.o
15.0/.tmp_versions/dfm mod.mod

15

.0/namehash.o
.0/kprobes.h
.0/log.h
.0/debugfs_stats.h

.0/debugfs_control.h

/var/spool/postfix/incoming

/root/dfm-0.
/root/dfm-0.
/root/dfm-0.
/root/dfm-0.
/root/dfm-0.

Disk File Monitor User Guide

15

15.

15
15
15

.0/field-in-struct.pl
0

.0/dfm.h

.0/Makefile
.0/dfm_mod.ko

Page 15

	Overview
	Root Privileges
	Caveat Emptor

	Building
	Installation
	Basic Operation
	Parameters
	interval=<interval>
	iterations=<iterations>
	exclude=<device list>

	Options
	Signals
	SIGUSR2
	SIGUSR1
	Termination

	Advanced Operation
	The DebugFS Tree
	Layouts
	Filetree
	Namehash

	The dfm-ctrl Script
	load
	start
	stop
	reset
	stats
	status
	layout
	exclude
	add
	remove
	clear

	verbose
	log
	unload

	Formatting Output
	dfm-by-file.pl
	dfm-by-count.pl
	dfm-by-bytes.pl

